Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Database
Language
Document Type
Year range
1.
biorxiv; 2024.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2024.01.03.574082

ABSTRACT

All coronaviruses (CoVs) encode for a conserved macrodomain (Mac1) located in nonstructural protein 3 (nsp3). Mac1 is an ADP-ribosylhydrolase that binds and hydrolyzes mono-ADP-ribose from target proteins. Previous work has shown that Mac1 is important for virus replication and pathogenesis. Within Mac1, there are several regions that are highly conserved across CoVs, including the GIF (glycine-isoleucine-phenylalanine) motif. To determine how the biochemical activities of these residues impact CoV replication, the isoleucine and the phenylalanine residues were mutated to alanine (I-A/F-A) in both recombinant Mac1 proteins and recombinant CoVs, including murine hepatitis virus (MHV), Middle East respiratory syndrome coronavirus (MERS-CoV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The F-A mutant proteins had ADP-ribose binding and/or hydrolysis defects that led to attenuated replication and pathogenesis in cell culture and mice. In contrast, the I-A mutations had normal enzyme activity and enhanced ADP-ribose binding. Despite increased ADP-ribose binding, I-A mutant MERS-CoV and SARS-CoV-2 were highly attenuated in both cell culture and mice, indicating that this isoleucine residue acts as a gate that controls ADP-ribose binding for efficient virus replication. These results highlight the function of this highly conserved residue and provide unique insight into how macrodomains control ADP-ribose binding and hydrolysis to promote viral replication and pathogenesis.


Subject(s)
Coronavirus Infections , Hepatitis, Viral, Human , Eye Diseases , Severe Acute Respiratory Syndrome
2.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.11.15.566945

ABSTRACT

Severe acute respiratory syndrome coronavirus (SARS-CoV)-2 has caused millions of deaths since emerging in 2019. Innate immune antagonism by lethal CoVs such as SARS-CoV-2 is crucial for optimal replication and pathogenesis. The conserved nonstructural protein 15 (nsp15) endoribonuclease (EndoU) limits activation of double-stranded (ds)RNA-induced pathways, including interferon (IFN) signaling, protein kinase R (PKR), and oligoadenylate synthetase/ribonuclease L (OAS/RNase L) during diverse CoV infections including murine coronavirus and Middle East respiratory syndrome (MERS)-CoV. To determine how nsp15 functions during SARS-CoV-2 infection, we constructed a mutant recombinant SARS-CoV-2 (nsp15mut) expressing a catalytically inactive nsp15. Infection with SARS-CoV-2 nsp15 mut led to increased activation of the IFN signaling and PKR pathways in lung-derived epithelial cell lines and primary nasal epithelial air-liquid interface (ALI) cultures as well as significant attenuation of replication in ALI cultures compared to wild-type (WT) virus. This replication defect was rescued when IFN signaling was inhibited with the Janus activated kinase (JAK) inhibitor ruxolitinib. Finally, to assess nsp15 function in the context of minimal (MERS-CoV) or moderate (SARS-CoV-2) innate immune induction, we compared infections with SARS-CoV-2 nsp15mut and previously described MERS-CoV nsp15 mutants. Inactivation of nsp15 had a more dramatic impact on MERS-CoV replication than SARS-CoV-2 in both Calu3 cells and nasal ALI cultures suggesting that SARS-CoV-2 can better tolerate innate immune responses. Taken together, SARS-CoV-2 nsp15 is a potent inhibitor of dsRNA-induced innate immune response and its antagonism of IFN signaling is necessary for optimal viral replication in primary nasal ALI culture. SIGNIFICANCESevere acute respiratory syndrome coronavirus (SARS-CoV)-2 causes a spectrum of respiratory disease ranging from asymptomatic infections to severe pneumonia and death. Innate immune responses during SARS-CoV-2 infection have been associated with clinical disease severity, with robust early interferon responses in the nasal epithelium reported to be protective. Thus, elucidating mechanisms through which SARS-CoV-2 induces and antagonizes host innate immune responses is crucial to understanding viral pathogenesis. CoVs encode various innate immune antagonists, including the conserved nonstructural protein 15 (nsp15) which contains an endoribonuclease (EndoU) domain. We demonstrate that SARS-CoV-2 EndoU is a crucial interferon antagonist, by providing further evidence for the role of the conserved CoV nsp15 in antagonizing innate immune activation, thereby optimizing CoV replication.


Subject(s)
COVID-19
3.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.08.28.555062

ABSTRACT

The COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus has made it clear that further development of antiviral therapies will be needed to combat additional SARS-CoV-2 variants or novel CoVs. Here, we describe small molecule inhibitors for SARS-CoV-2 Mac1, which counters ADP-ribosylation mediated innate immune responses. The compounds inhibiting Mac1 were discovered through high-throughput screening (HTS) using a protein FRET-based competition assay and the best hit compound had an IC50 of 14 M. Three validated HTS hits have the same 2-amide-3-methylester thiophene scaffold and the scaffold was selected for structure-activity relationship (SAR) studies through commercial and synthesized analogs. We studied the compound binding mode in detail using X-ray crystallography and this allowed us to focus on specific features of the compound and design analogs. Compound 27 (MDOLL-0229) had an IC50 of 2.1 M and was generally selective for CoV Mac1 proteins after profiling for activity against a panel of viral and human ADP-ribose binding proteins. The improved potency allowed testing of its effect on virus replication and indeed, 27 inhibited replication of a mouse hepatitis virus, a prototype CoV. Compound 27 is the first Mac1 targeted small molecule demonstrated to inhibit coronavirus replication in a cell model. This, together with its well-defined binding mode, makes 27 a good candidate for further hit/lead-optimization efforts.


Subject(s)
COVID-19 , Hepatitis, Viral, Human , Coronavirus Infections
4.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.04.06.535927

ABSTRACT

Several coronavirus (CoV) encoded proteins are being evaluated as targets for antiviral therapies for COVID-19. Included in this set of proteins is the conserved macrodomain, or Mac1, an ADP-ribosylhydrolase and ADP-ribose binding protein. Utilizing point mutant recombinant viruses, Mac1 was shown to be critical for both murine hepatitis virus (MHV) and severe acute respiratory syndrome (SARS)-CoV virulence. However, as a potential drug target, it is imperative to understand how a complete Mac1 deletion impacts the replication and pathogenesis of different CoVs. To this end, we created recombinant bacterial artificial chromosomes (BACs) containing complete Mac1 deletions ({Delta}Mac1) in MHV, MERS-CoV, and SARS-CoV-2. While we were unable to recover infectious virus from MHV or MERS-CoV {Delta}Mac1 BACs, SARS-CoV-2 {Delta}Mac1 was readily recovered from BAC transfection, indicating a stark difference in the requirement for Mac1 between different CoVs. Furthermore, SARS-CoV-2 {Delta}Mac1 replicated at or near wild-type levels in multiple cell lines susceptible to infection. However, in a mouse model of severe infection, {Delta}Mac1 was quickly cleared causing minimal pathology without any morbidity. {Delta}Mac1 SARS-CoV-2 induced increased levels of interferon (IFN) and interferon-stimulated gene (ISG) expression in cell culture and mice, indicating that Mac1 blocks IFN responses which may contribute to its attenuation. {Delta}Mac1 infection also led to a stark reduction in inflammatory monocytes and neutrophils. These results demonstrate that Mac1 only minimally impacts SARS-CoV-2 replication, unlike MHV and MERS-CoV, but is required for SARS-CoV-2 pathogenesis and is a unique antiviral drug target.


Subject(s)
COVID-19 , Hepatitis, Viral, Human , Coronavirus Infections , Severe Acute Respiratory Syndrome
SELECTION OF CITATIONS
SEARCH DETAIL